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Abstract. In the present paper we will discuss Bernstein’s classical theorem for a polynomial F of degree m,  
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Introduction  

Let Fm be the linear space of polynomials over the complex field of degree less than or equal to m. 

For F  Fm, define 
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. is a  norm and therefore  Fm is a normed linear space under f

.
. However, for 10  r , f

.
does not 

satisfy the triangle inequality and is therefore not a norm this follows from Minkowski’s inequality see [3]. 

 Bernstein’s well knowing result relating the supremum norm of a polynomial and its derivative 

states that if  

F  Fm
 then 

F then 
 FmF [9]. This inequality reduces to equality if and only if 

mttF )( for 

some complex constant  .Erdos conjectured and Lax proved [7]. 
 

Theorem 1. If 
F  Fm

 and thentfortF ,10)(   

                                        


 F
m

F
2                                                                                                                

(4)
 

Malik generalized Theorem 1 and proved [4] 

 

PL
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Theorem 2. If 
F  Fm
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Of course. Theorem 1 follows from Theroem2 when l=1. Chan and Malik [3] introduced the class of 

polynomials of the form 
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We denote the linear space of all such polynomials as 

Fn,m
. 

we Notice that  
Fn,1

 =
 Fn

 Chan and Malik presented the following result [3]. 
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Qazi, independently of Chan and Malik, presented the following result which includes Theorem3 [8] 
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Since 0bmlbm m

m 
. Theorem 4 Implies Theorem 3. 

Zygmund [11] extended Bernstein’s result to 
PL

norms. DeBruijin [6] extended theorem 1 to 
PL

norms by 
showing. 
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Of course theoem 5 reduces to theorem 1 with 
r

. Rahman and schmeisser [8] proved that theorem5 in 

fact holds for 
 r0

. The purpose of this paper is to show that theorem3 and theorem4 can be extended 

to 
PL
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STATEMENT  
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Where 0J
is as given in Theorem4. With 

r , theorem 2 reduces to theorem 4. As mentioned. 

Corollary 1. If F  Fm
 and 
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r , Corollary 1 reduces to theorem3 of special interest is the fact theorem 

2 and corollary 1 holds for 
PL norms for all  r1 . In Particular, we have 
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With m=1, Corollary 2 yields an 
PL  version of theorem 2 with r , Corollary 2 reduces to theorem 3 

with m=1 and r  Corollary 2 reduces to theorem 2. Finally with m=1, r  and l=1, Corollary 2 
reduces to Theorem1. 

 

LEEMAS 

 
We need the following leemas for the proof of our theorem. 

Leema1. If the polynomial F(t) of degree m has no roots in the circular domain C and if D then 
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The Operator  is said to be admissiable it if preserves one of the following properties. 

(1) F(t) has all it zeros in  1:  tDt  

(2) F(t) has all it zeros in  1:  tDt  
The proof of leema 3 was given by Arestov [1] 
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By lemma3 we have 0)()()(  tFttmF  for 1,1  t Therefore setting 

Rte i     , the operator  defined by 
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By the fact that 
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is an increasing function of r for 
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Thus combining (13) and(14) we 
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From which the theorem follows for 

 r0

. This results holds good for r=0 and 

r

by 

letting 
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. 

 

 



 ISSN: 2320-0294Impact Factor: 6.765  

68 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

REFERENCES  

1. A. Zygmund, ‘‘Trigonometric Series,’’ 2nd rev. ed., Vols. I, II, Cambridge Univ. Press, Cambridge, UK, 1959. 

2. E. Laguerre, ‘‘Oeuvres,’’ Vol. 1; Nou¤elles Ann. Math. 17, No. 2  1878.. 

3. H. Royden, ‘‘Real Analysis,’’ 3rd ed., Macmillan Co., New York, 1988. 

4. M. Malik, On the derivative of a polynomial, J. London Math. Soc. 1, No. 2  1969., 57]60. 

5. M. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 1992., 337]343. 

6. N. DeBruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. 50, 1947., 1265]1272. 

7. P. Lax, Proof of a conjecture of P.Erdos on the derivative of a polynomial, Bull,Amer.math.Soc.50 (1994),509-513 

8. Q. Rahman and G. Schmeisser, L 
p
 inequalities for polynomials, J. Approx. Theory 53 1988., 26]32. 

9. S. Bernstein, ‘‘Lec¸ons sur les proprietes´´ extremales´ et la meilleure approximation des 

10. T. Chan and M. Malik, On Erdos ]̈Lax theorem, Proc. Indian Acad. Sci. 92 1983., 191]193. 

11. V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Math. USSR-Iz¤. 18 (1982), 1-17. 

 

 

 

 

 


